Respuesta :
Answer:
Option D is correct.
[tex]\frac{8}{9}n - 1\frac{1}{3}[/tex]
Step-by-step explanation:
Given that: [tex]\frac{4}{9}(2n-3)[/tex] .....[1]
The distributive property says that:
[tex]a\cdot (b+c) = a\cdot b + a\cdot c[/tex]
Apply the distributive property in equation [1] we get;
[tex]\frac{4}{9} \cdot 2n+ \frac{4}{9} \cdot (-3)[/tex]
Simplify:
[tex]\frac{8}{9}n - \frac{4}{3}[/tex]
We can write [tex]\frac{4}{3}[/tex] in mixed fraction as:
[tex]\frac{4}{3} = 1\frac{1}{3}[/tex]
then;
[tex]\frac{8}{9}n - 1\frac{1}{3}[/tex]
Therefore, the expression which is equivalent to [tex]\frac{4}{9}(2n-3)[/tex] is, [tex]\frac{8}{9}n - 1\frac{1}{3}[/tex]