Respuesta :

I solved for x in each case and got
x [tex] \geq [/tex]-1 and x [tex] \leq [/tex]7

So the first graph would apply

we have

[tex]-4\leq 3x-1[/tex] ----> inequality A

[tex]-4\leq 3x-1 \\-4+1 \leq 3x\\-3 \leq 3x\\-1\leq x\\ x\geq-1[/tex]

The solution of the inequality A is the interval ------> [-1,∞)

[tex]2x+4\leq 18[/tex] -------> inequality B

[tex]2x \leq 18-4[/tex]

[tex]x \leq 14/2[/tex]

[tex]x \leq 7[/tex]

The solution of the inequality B is the interval ------> (-∞,7]

The solution of the compound inequality is

[-1,∞) ∩ (-∞,7]=[-1,7]

therefore

the answer in the attached figure

Ver imagen calculista