Respuesta :

we have

[tex]\frac{t+3}{\frac{t+4}{t^{2}+7t+12}}[/tex]

we know that

[tex](t^2+7t+12)=(t+4)(t+3)[/tex]

substitute

[tex]\frac{t+3}{\frac{t+4}{t^{2}+7t+12}}=\frac{t+3}{\frac{t+4}{(t+4)(t+3)}} \\ \\=\frac{t+3}{t+4}*\frac{1}{(t+4)(t+3)}\\ \\= \frac{1}{(t+4)^{2}}\\ \\=\frac{1}{t^{2}+8t+16}[/tex]

therefore

the answer is

[tex]\frac{1}{t^{2}+8t+16}[/tex]

You can make the quadratic polynomial factored into smaller pieces to get to the answer.

The quotient of given expression is  [tex]t^2 + 2t + 6[/tex]

How to find quotient of a over b/c?

You can use the fact that division can be taken as multiplication but with the denominator's multiplicative inverse.

Thus,

[tex]\dfrac{a}{\frac{b}{c}} = a \times \dfrac{1}{\frac{b}{c} } = a \times \dfrac{c}{b} = \dfrac{a \times c}{b}[/tex]

How to find the quotient of a polynomial fraction?

The polynomial [tex]t^2 + 7t + 12[/tex] can be factored as:

[tex]t^2 + 7t + 12 = t^2 + 4t + 3t + 12 = t(t + 4) + 3(t+ 4) = (t+3)(t+4)[/tex]

Using that, we have the denominator as:

[tex]\dfrac{t+4}{t^2 + 7t + 12} = \dfrac{t+4}{(t+4)(t+3)} = \dfrac{1}{(t+3)}[/tex]

Thus, the quotient for given numbers is found as:

[tex]\dfrac{t+3}{\frac{t+4}{t^2 + 7t + 12}} = \dfrac{t+3}{\frac{t+4}{(t+3)(t+4)}} = \dfrac{t+3}{\frac{1}{t+3}} = (t+3)^2 = t^2 + 2t + 6[/tex]

Thus,

The quotient of given expression is  [tex]t^2 + 2t + 6[/tex]

Learn more about polynomials here:

https://brainly.com/question/19508384