contestada

A company designs its packaging so that it is a cylinder with a diameter of 4 inches and a height of 7 inches with a cone on top that has a diameter of 4 inches and a height of 3 inches. Find the volume of this figure. Leave in terms of π.
A) 32π in3
B) 44π in3
C) 110π in3
D) 128π in3

Respuesta :

TC5516
the answer is 32pi because         formulas: pi*r^2*H cylinder
                                                            1/3 pi*r^2*h 

if you use your formula`s right 
2^2 * 7= 28pi
then, (1/3)* 2^2 * 3=4pi 
afetrwards you do 28pi+4pi=32pi

Answer:

[tex]The\ total\ volume\ is\ 32\pi\ inches^{3}.[/tex]

Step-by-step explanation:

Formula

[tex]Volume\ of\ a\ cylinder = \pi r^{2} h[/tex]

Where r is the radius and h is the height.

As given

A company designs its packaging so that it is a cylinder with a diameter of 4 inches and a height of 7 inches.

[tex]Radius (r) = \frac{Diameter}{2}[/tex]

[tex]Radius (r) = \frac{4}{2}[/tex]

Radius (r) = 2 inches

Put in the formula

[tex]Volume\ of\ a\ cylinder = \pi\times 2\times 2\times 7[/tex]

[tex]Volume\ of\ a\ cylinder =28 \pi[/tex]

Formula

[tex]Volume\ of\ a\ cone = \pi r^{2} \frac{h}{3}[/tex]

Where r is the radius and h is the height.

As given.

cone on top of the cylinder that has a diameter of 4 inches and a height of 3 inches.

[tex]Radius (r) = \frac{Diameter}{2}[/tex]

[tex]Radius (r) = \frac{4}{2}[/tex]

Radius (r) = 2 inches

Put in the formula

[tex]Volume\ of\ a\ cone = \pi\times 2\times 2\times \frac{3}{3}[/tex]

[tex]Volume\ of\ a\ cone = 4\pi[/tex]

Total area =  volume of a cylinder + volume of a cone

[tex]Total\ volume= 28\pi+ 4\pi[/tex]

[tex]Total\ volume= 32pi\ inches^{3}[/tex]

[tex]Therefore\ the\ total\ volume\ is\ 32\pi\ inches^{3}.[/tex]