Respuesta :
Answer:
Reflection across x- axis and then translation (x+8,y-2).
Step-by-step explanation:
We are given that a pentagon ABCDE with vertices A at (-4,5), B at (-6,4),C at (-5,1) , D at (-2,2) , E at (-2,4).
The pentagon A'B'C'D'E' is the image of pentagon ABCDE create after transformation.
The vertices A' at (4,-7),B' at (2,-6), C' at (3,-3), D' at (6,-4) and E' at (6,-6).
We have to find the transformation applied on pentagon ABCDE to create A'B'C'D'E'.
The rule of transformation of reflection across x- axis is given by
[tex](x,y)\rightarrow (x,-y)[/tex]
Therefore, the coordinates of ABCDE after reflection across x- axis is given by
[tex]A =(-4,5)\rightarrow (-4,-5)[/tex]
[tex] B=(-6,4)\rightarrow (-6,-4)[/tex]
[tex]C=(-5,1)\rightarrow (-5,-1)[/tex]
[tex]D=(-2,2)\rightarrow (-2,-2)[/tex]
[tex]E=(-2,4)\rightarrow (-2,-4)[/tex]
Now, apply the translation
[tex](x,y)\rightarrow (x+8, y-2)[/tex]
Therefore, after applying translation then, we get
[tex](-4,-5)\rightarrow (4,-7)=A'[/tex]
[tex](-6,-4)\rightarrow (2,-6)=B'[/tex]
[tex](-5,-1)\rightarrow (3,-3)=C'[/tex]
[tex](-2,-2)\rightarrow (6,-4)=D'[/tex]
[tex](-2,-4)\rightarrow (6,-6)=E'[/tex]
Hence, A'B'C'D'E' is created .
Answer:Reflection across x- axis and then translation (x+8,y-2).