Respuesta :

given the function f(x)=x^2+5x+5 , to get the zeros we solve using quadratic formula;
x=[-b(+or-) sqrt(b^2-4ac)]/(2a)
from our function;
a=1,b=5, c=5

thus,

x=[-5(+or-)sqrt(5^2-4*1*5)]/(2*1)
x=[-5(+or-)sqrt(25-20)]/2
x=[-5+/-sqrt(5)/2

The answer is option C

The zeros of the function f(x) = x2 + 5x + 5 is [tex]\rm x=\dfrac{-5\pm\sqrt{5}}{2}[/tex]correct option is c.

Roots of the quadratic equation

The zeros of the quadratic equation are determined by using the quadratic formula;

[tex]\rm x=\dfrac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

Given information

Function; [tex]\rm f(x)=x^2+5x+5\\\\[/tex]

On comparing with the given equation

The value of a = 1, b = 5, and c = 5.

Substitute all the values in the formula;

[tex]\rm x=\dfrac{-b\pm\sqrt{b^2-4ac} }{2a}\\\\\rm x=\dfrac{-5\pm\sqrt{5^2-4(1)(5)} }{2(1)}\\\\\rm x=\dfrac{-5\pm\sqrt{25-20} }{2}\\\\x=\dfrac{-5\pm\sqrt{5} }{2}[/tex]

Hence, the zeros of the function f(x) = x2 + 5x + 5 is [tex]\rm x=\dfrac{-5\pm\sqrt{5}}{2}\\\\[/tex].

To know more about quadratic equations click the link given below.

https://brainly.com/question/2263981