Which transformations are needed to change the parent sine function to
y=1/4sin(4(x+pi/6))?

A.) vertical stretch of 1/4, horizontal stretch to a period of 2pi, phase shift of pi/6 units to the left

B.)vertical compression of 1/4, horizontal compression to a period of pi/2, phase shift of pi/6 units to the left

C.)vertical stretch of 4, horizontal stretch to a period of 8pi, phase shift of pi/6 units to the right

D.)vertical compression of 4, horizontal compression to a period of pi/4, phase shift of pi/6 units to the right

Respuesta :

Answer:

Option B is correct.

Transformation needed are;

Vertical compression of 1/4,

horizontal compression to a period of pi/2,

phase shift of pi/6 units to the left.

Step-by-step explanation:

The formula for the general Sine function is given by;

[tex]y = A\sin(B(x+C))+D[/tex] where

if A >1, Vertical stretch and

if 0<A<1, Vertical compression

Period is [tex]\frac{2\pi}{B}[/tex]

Phase shift is C (Positive is to left)

Vertical shift is D.

Given the function:

[tex]y = \frac{1}{4}\sin(4(x+\frac{\pi}{6}))[/tex]

here,

[tex]A = \frac{1}{4} < 1[/tex], B = 4 , [tex]C= \frac{\pi}{6}[/tex] and D = 0

Therefore, transformation are needed on sine function to get [tex]y = \frac{1}{4}\sin(4(x+\frac{\pi}{6}))[/tex]

Vertical  compression of [tex]\frac{1}{4}[/tex]

Horizontal stretch to a period = [tex]\frac{2 \pi}{4} = \frac{\pi}{2}[/tex]

Phase shift = [tex]\frac{\pi}{6}[/tex] units to left.





Answer:

B

Step-by-step explanation: