we know that
The rule of the translation of the pre-image to the image is equal to
[tex](x,y)-------> (x-4,y+3)[/tex]
that means
The translation is [tex]4[/tex] units to the left and [tex]3[/tex] units up
so
the inverse rule of translation of the image to the pre-image is equal to
[tex](x',y')-------> (x'+4,y'-3)[/tex]
we have the vertices of the image
[tex]A'(-5,4)\\B'(3,4)\\C'(3,1)\\D'(-5,1)[/tex]
Applying the inverse rule of the translation find the coordinates of the vertices of the pre-image
Step 1
Find the coordinates of the vertex A of the pre-image
[tex](-5,4)-------> (-5+4,4-3)[/tex]
[tex](-5,4)-------> (-1,1)[/tex]
the coordinates of vertex A is [tex](-1,1)[/tex]
Step 2
Find the coordinates of the vertex B of the pre-image
[tex](3,4)-------> (3+4,4-3)[/tex]
[tex](3,4)-------> (7,1)[/tex]
the coordinates of vertex B is [tex](7,1)[/tex]
Step 3
Find the coordinates of the vertex C of the pre-image
[tex](3,1)-------> (3+4,1-3)[/tex]
[tex](3,1)-------> (7,-2)[/tex]
the coordinates of vertex C is [tex](7,-2)[/tex]
Step 4
Find the coordinates of the vertex D of the pre-image
[tex](-5,1)-------> (-5+4,1-3)[/tex]
[tex](-5,1)-------> (-1,-2)[/tex]
the coordinates of vertex D is [tex](-1,-2)[/tex]
Step 5
Verify which points are vertices of the pre-image
[tex](-1,-2)[/tex] -------> this point is the vertex D of the pre-image
[tex](7,1)[/tex] -------> this point is the vertex B of the pre-image
[tex](-1,7)[/tex] -------> this point is not a vertex of the pre-image
[tex](7,-2)[/tex] -------> this point is the vertex C of the pre-image
therefore
the answer is
[tex](-1,-2)[/tex]
[tex](7,1)[/tex]
[tex](7,-2)[/tex]