Respuesta :
F(x)=y=5(x+4)-6
f^(-1)(x)=x=5(y+4)-6
x+6=5(y+4)
(1/5)x+(6/5)=y+4
(1/5)(x)+(6/5)-4=y
y=0.2x-2.8
0.2(19)-2.8
3.8-2.8=1
f^(-1)(19)=1
f^(-1)(x)=x=5(y+4)-6
x+6=5(y+4)
(1/5)x+(6/5)=y+4
(1/5)(x)+(6/5)-4=y
y=0.2x-2.8
0.2(19)-2.8
3.8-2.8=1
f^(-1)(19)=1
If f(x) = 5(x + 4) - 6
then y = 5(x + 4) - 6
By interchanging x & y
⇒ x = 5(y + 4) - 6
⇒ [tex] \frac{x + 6}{5} [/tex] = y + 4
⇒ y = [tex] \frac{x - 14}{5} [/tex]
∴ f⁻¹(x) = [tex] \frac{x - 14}{5} [/tex]
When x = 19 ;
f⁻¹(19) = [tex] \frac{19 - 14}{5} [/tex]
= 1
∴ when x= 19 the inverse is equal to 1.
then y = 5(x + 4) - 6
By interchanging x & y
⇒ x = 5(y + 4) - 6
⇒ [tex] \frac{x + 6}{5} [/tex] = y + 4
⇒ y = [tex] \frac{x - 14}{5} [/tex]
∴ f⁻¹(x) = [tex] \frac{x - 14}{5} [/tex]
When x = 19 ;
f⁻¹(19) = [tex] \frac{19 - 14}{5} [/tex]
= 1
∴ when x= 19 the inverse is equal to 1.