The radii of Earth and Pluto are 6,371 kilometers and 1,161 kilometers, respectively. Approximately how many spheres the size of Pluto does it take to have the same volume as Earth?
121
154
165
176
189
NextReset

Respuesta :

[tex]\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\[/tex]

[tex]\bf \cfrac{\textit{earth's volume}}{\textit{pluto's volume}}\qquad \cfrac{s^3}{s^3}\implies \cfrac{6371^3}{1161^3}\implies \cfrac{258596602811}{1564936281}\approx 165.24417[/tex]

Answer:

165

Step-by-step explanation:

I just took a test on Plato/Edmentum with this question and this was the right answer

~Please mark me as brainliest :)