Respuesta :
[tex]\bf \qquad \qquad \textit{ratio relations}
\\\\
\begin{array}{ccccllll}
&Sides&Area&Volume\\
&-----&-----&-----\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3}
\end{array} \\\\
-----------------------------\\\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\
-------------------------------\\\\[/tex]
[tex]\bf \cfrac{s}{s}=\cfrac{2x}{5y}\qquad \textit{then the areas ratio is }\cfrac{s^2}{s^2}\implies \cfrac{(2x)^2}{(5y)^2}\implies \cfrac{4x^2}{25y^2}[/tex]
[tex]\bf \cfrac{s}{s}=\cfrac{2x}{5y}\qquad \textit{then the areas ratio is }\cfrac{s^2}{s^2}\implies \cfrac{(2x)^2}{(5y)^2}\implies \cfrac{4x^2}{25y^2}[/tex]