[tex]\bf \textit{exponential form of a logarithm}\\\\
log_{{ a}}{{ b}}=y \implies {{ a}}^y={{ b}}\qquad\qquad
% exponential notation 2nd form
{{ a}}^y={{ b}}\implies log_{{ a}}{{ b}}=y
\\\\
-------------------------------\\\\[/tex]
[tex]\bf 4^y=8\implies log_4(8)=y\qquad
\begin{cases}
4=2^2\\
8=2^3
\end{cases}\implies (2^2)^y=2^3
\\\\\\
2^{2y}=2^3\impliedby \textit{since the bases are the same, so are the exponents}
\\\\\\
2y=3\implies y=\cfrac{3}{2}\implies y=1\frac{1}{2}\quad thus\quad
\begin{cases}
x=8\\
y=\frac{3}{2}
\end{cases}[/tex]
so.. check your graphs