Respuesta :
Let a =107° and b=42°;
So cos 107° cos 42° + sin 107° sin 42° = cosa.cos42 + sina.sinb = cos(a-b)
and cos 107° cos 42° + sin 107° sin 42° = cos(107-42) = cos(65°)
So cos 107° cos 42° + sin 107° sin 42° = cosa.cos42 + sina.sinb = cos(a-b)
and cos 107° cos 42° + sin 107° sin 42° = cos(107-42) = cos(65°)
Answer: It will be
[tex]\cos65\textdegree\ and\ \sin 25\textdegree[/tex]
Step-by-step explanation:
Since we have given that
cos 107° cos 42° + sin 107° sin 42°
As we know the formula :
[tex]\cos A\cos B+\sin A\sin B=cos(A-B)[/tex]
So, applying the above formula , we get
[tex]A=107\textdegree\\B=42\textdegree[/tex]
Now, we have to write it in cosine terms,
So, we get,
[tex]\cos(107\textdegree-42\textdegree)=\cos65\textdegree[/tex]
So, in terms of cosine , it will be
[tex]\cos65\textdegree[/tex]
In terms of sine , it will be
[tex]\cos 65\textdegree=\sin(90\textdegree-65\textdegree)=\sin 25\textdegree[/tex]
Hence, it will be
[tex]\cos65\textdegree\ and\ \sin 25\textdegree[/tex]