Respuesta :

[tex]27a^6+8g^{12} = (3a^2)^3+(2g^4)^3= \\ =(3a^2+2g^4)(9a^4-6a^2g^4+4g^8)[/tex]

The factored form of  [tex]27\;a^{6} \; + \; 8g^{12}[/tex] is (3d² + 2g⁴)(9d⁴ - 6d²g⁴ + 4g⁸)

What is factorization?

The process of breaking down a number into smaller numbers which when multiplied together arrive at the original number.

Given that:

[tex]27\;a^{6} \; + \; 8g^{12}[/tex]

= (3)³ (a²)³ + (2)³ ([tex]g^{4}[/tex])³

= (3a²)³ + (2[tex]g^{4}[/tex])³

Now, using identity

a³+b³= (a + b)(a²-ab + b²)

=  (3d² + 2g⁴)((3d²)² - 3d²2g⁴ + (2g⁴)²)

=   (3d² + 2g⁴)(9d⁴ - 6d²g⁴ + 4g⁸)

Hence, the factors form is (3d² + 2g⁴)(9d⁴ - 6d²g⁴ + 4g⁸)

Learn more about factorization here:

https://brainly.com/question/2059524

#SPJ2