Respuesta :
[tex]\bf c^2=a^2+b^2\qquad
\begin{cases}
c=hypotenuse\\
a=adjacent\\
b=opposite\\
------\\
a=m^2-n^2\\
b=2mn
\end{cases}\\\\\\ c^2=(m^2-n^2)^2+(\underline{2mn})^2
\\\\\\
c^2=m^4-2m^2n^2+n^4+\underline{2^2m^2n^2}
\\\\\\
c^2=m^4-2m^2n^2+n^4+{4m^2n^2}
\\\\\\
c^2=m^4+2m^2n^2+n^4\impliedby \textit{perfect square trinomial}
\\\\\\
c^2=(m^2+n^2)^2\implies c=\sqrt{(m^2+n^2)^2}\implies c=m^2+n^2[/tex]