A balloon has a circumference of 28 in. Use the circumference to approximate the surface area of the balloon to the nearest square inch.

Respuesta :

irspow
C=2πr

r=C/(2π), now the surface area is:

A=4πr^2, using r found above we have:

A=4πC^2/(4π^2)

A=C^2/π, we are given that C=28 so:

A=28^2/π in^2

A=784/π in^2

A≈250 in^2 (to nearest square inch)

Answer:

The surface area of the balloon 250 sq. in.

Step-by-step explanation:

Given : A balloon has a circumference of 28 in.

To find : The surface area of the balloon to the nearest square inch using the circumference.

Solution :

The surface area of sphere is [tex]S.A=4\pi r^{2}[/tex]

Circumference of sphere is [tex]C=2\pi r[/tex]

We have to find the radius using circumference.

Given C=28

[tex]r=\frac{C}{2\pi}[/tex]

[tex]r=\frac{28}{2\pi}[/tex]

[tex]r=\frac{14}{\pi}[/tex]

Substitute the value of r in the formula of surface area,

[tex]S.A=4\pi r^{2}[/tex]

[tex]S.A=4\pi (\frac{14}{\pi})^{2}[/tex]

[tex]S.A=4\pi \times \frac{196}{\pi^2}[/tex]

[tex]S.A=4\times \frac{196}{\pi}[/tex]

Put [tex]\pi=3.14[/tex]

[tex]S.A=4\times \frac{196}{3.14}[/tex]

[tex]S.A=4\times 62.42[/tex]

[tex]S.A=249.68in^2[/tex]

Nearest square inch = 250 square inch.

Therefore, The surface area of the balloon 250 sq. in.