Respuesta :

[tex]\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ -3}}\quad ,&{{ 4}})\quad % (c,d) &({{ 3}}\quad ,&{{ -4}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{-4-4}{3-(-3)}\implies \cfrac{-4-4}{3+3}[/tex]

[tex]\bf y-{{ y_1}}={{ m}}(x-{{ x_1}})\qquad \begin{array}{llll} \textit{plug in the values for } \begin{cases} y_1=4\\ x_1=-3\\ m=\boxed{?} \end{cases}\\ \end{array}\\ \left. \qquad \right. \uparrow\\ \textit{point-slope form}[/tex]
so i'm guessing by what he says thats the last one