What are the zeros of the quadratic function f(x) = 2x2 – 10x – 3?
x =  –  and x =  + 
x =  –  and x =  + 
x =  –  and x =  + 
x =  –  and x =  + 

Respuesta :

we have

[tex]f(x)=2x^{2}-10x-3[/tex]

we know that

To find the zeros of the quadratic equation equate to zero

[tex]2x^{2}-10x-3=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]2x^{2}-10x=3[/tex]

Factor the leading coefficient

[tex]2(x^{2}-5x)=3[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side.

[tex]2(x^{2}-5x+6.25)=3+12.5[/tex]

[tex]2(x^{2}-5x+6.25)=15.5[/tex]

Rewrite as perfect squares

[tex]2(x-2.5)^{2}=15.5[/tex]

[tex](x-2.5)^{2}=7.75[/tex]

[tex](x-2.5)=(+/-)\sqrt{7.75}[/tex]

[tex](x-2.5)=(+/-)2.78[/tex]

[tex]x1=(+)2.78+2.5=5.284[/tex]  or  [tex]x1=\frac{\sqrt{31}}{2} +2.5[/tex]

[tex]x2=(-)2.78+2.5=-0.284[/tex]  or  [tex]x2=-\frac{\sqrt{31}}{2} +2.5[/tex]

therefore

the answer is

[tex]x1=5.284[/tex]  or  [tex]x1=\frac{\sqrt{31}}{2} +2.5[/tex]

[tex]x2=-0.284[/tex]  or   [tex]x2=-\frac{\sqrt{31}}{2} +2.5[/tex]

see the attached figure to verify

Ver imagen calculista

A quadratic function has a leading degree of 2. The roots of the equation are 5/2 + √31/2 and 5/2 - √31/2

How to calculate the zero of a quadratic function

A quadratic function has a leading degree of 2. Given the quadratic equation expressed as:

f(x) = 2x^2 - 10x - 3

The zero of the equation of the function occur at the point whee f(x) = 0

2x^2 - 10x - 3 = 0

On factorizing, the zeros of the equation are

x = 5/2 + √31/2 and 5/2 - √31/2

Learn more on quadratic equations here: https://brainly.com/question/1214333