Respuesta :
f(x) = x2 - 2x + 2
g(x) = x - 3
(f • g)(x) = (x2 - 2x + 2)(x - 3)
(f • g)(x) = x2(x - 3) - 2x(x - 3) + 2(x - 3)
(f • g)(x) = x3 - 3x2 - 2x2 + 6x + 2x - 6
(f • g)(x) = x3 - 5x2 + 8x - 6
The answer is B.
g(x) = x - 3
(f • g)(x) = (x2 - 2x + 2)(x - 3)
(f • g)(x) = x2(x - 3) - 2x(x - 3) + 2(x - 3)
(f • g)(x) = x3 - 3x2 - 2x2 + 6x + 2x - 6
(f • g)(x) = x3 - 5x2 + 8x - 6
The answer is B.
Answer: Option 2 is correct
[tex]x^3-5x^2+8x-6[/tex]
Explanation:
We have been given two functions [tex]f(x)=x^2-2x+2 \\\\and\\g(x)=x-3[/tex]
we need to find f(x).g(x)
We need to multiply the given two functions
So, as to multiply [tex](x^2-2x+2)(x-3)[/tex]
Multiply each term of f(x) with g(x) we will get
[tex]x^2(x-3)=x^3-3x^2[/tex]
[tex]-2x(x-3)=-2x^2+6x[/tex]
[tex]2(x-3)=2x-6[/tex]
Hence the final result after multiplying both the functions is
[tex]x^3-5x^2+8x-6[/tex]