Respuesta :

[tex]\bf \qquad \qquad \textit{Future Value of an ordinary annuity}\\ \left. \qquad \qquad \right. (\textit{payments at the end of the period}) \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right][/tex]

[tex]\bf \begin{cases} A= \begin{array}{llll} \textit{accumulated amount}\\ \end{array}\\ pymnt=\textit{periodic payments}\to &110\\ r=rate\to 5.75\%\to \frac{5.75}{100}\to &0.0575\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{payments are monthly, thus} \end{array}\to &12\\ t=years\to &2 \end{cases} \\\\\\ A=110\left[ \cfrac{\left( 1+\frac{0.0575}{12} \right)^{12\cdot 2}-1}{\frac{0.0575}{12}} \right][/tex]