Respuesta :
[tex]\bf y=cot\left(x-\frac{2\pi }{3} \right)\implies y=\cfrac{cos\left(x-\frac{2\pi }{3} \right)}{sin\left(x-\frac{2\pi }{3} \right)}[/tex]
now, if the denominator turns to 0, the fraction becomes undefined, and you get a "vertical asymptote" when that happens, so let's check when is that
[tex]\bf sin\left(x-\frac{2\pi }{3} \right)=0\implies sin^{-1}\left[ sin\left(x-\frac{2\pi }{3} \right) \right]=sin^{-1}(0) \\\\\\ x-\frac{2\pi }{3}= \begin{cases} 0\\ \pi \end{cases}\implies \measuredangle x= \begin{cases} \frac{2\pi }{3}\\ \frac{5\pi }{3} \end{cases}[/tex]
now, at those angles, the function is asymptotic, check the picture below
now, if the denominator turns to 0, the fraction becomes undefined, and you get a "vertical asymptote" when that happens, so let's check when is that
[tex]\bf sin\left(x-\frac{2\pi }{3} \right)=0\implies sin^{-1}\left[ sin\left(x-\frac{2\pi }{3} \right) \right]=sin^{-1}(0) \\\\\\ x-\frac{2\pi }{3}= \begin{cases} 0\\ \pi \end{cases}\implies \measuredangle x= \begin{cases} \frac{2\pi }{3}\\ \frac{5\pi }{3} \end{cases}[/tex]
now, at those angles, the function is asymptotic, check the picture below

Answer:
B. x = -pi/3
Step-by-step explanation:
this is the correct answer on ed-genuity, hope this helps you! :)