Answer:
[tex]\text{The value of x and y is } x=5, y=29[/tex]
Step-by-step explanation:
Given the product of two expressions
[tex]4z^2+7z-8\text{ and }-z+3\text{ is }-4z^3+xz^2+yz-24[/tex]
we have to find the value of x and y
First we find the product of
[tex]4z^2+7z-8\text{ and }-z+3[/tex]
[tex](4z^2+7z-8)(-z+3)[/tex]
Opening the brackets
[tex]4z^2(-z+3)+7z(-z+3)-8(-z+3)[/tex]
Using distributive property, a.(b+c)=a.b+a.c
[tex](-4z^3+12z^2)+(-7z^2+21z)+(8z-24)[/tex]
Combining like terms
[tex]-4z^3+(12z^2-7z^2)+(21z+8z)-24[/tex]
[tex]-4z^3+5z^2+29z-24[/tex]
which is required product.
[tex]\text{Now compare above product with given product }-4z^3+xz^2+yz-24[/tex]
[tex]x=5, y=29[/tex]