Given: AC is the hypotenuse and BD is the altitude of △ABC. AD=27, CD=40, AB=e, BD=j, and BC=h
Find the value of e
How the literal devil am i supposed to do this, legit i've tried for hours first answer gets Brainliest

Respuesta :

check the picture.

In triangle ABC:

m(B)=90°, let m(A)=α, and let m(C)=β

so m(B)+m(A)+m(C)=180°, so α+β=90°

In triangle ABD, m(A)=α, m(ADB)=90° so m(ABD) must be β, so that the sum completes to 180.

By the same logic, m(DBC)=α

so we have the following similarities of triangles: (let's go by the order α-β-90°):

ACB ≡ ABD ≡ BCD, 

consider ABD ≡ BCD:

[tex] \frac{AB}{BC} = \frac{BD}{CD} = \frac{AD}{BD} [/tex]

substitute with the givens:

[tex] \frac{e}{h} = \frac{j}{40} = \frac{27}{j} [/tex]

from 

[tex]\frac{j}{40} = \frac{27}{j}[/tex]

we have 

[tex] j^{2}=40*27 =1080[/tex]

In triangle ABD, from the pythagorean theorem:

[tex] e^{2} = j^{2}+27^{2}=1080+729=1089[/tex]

so [tex]e= \sqrt{1089}= 42.53 (units)[/tex]

Remark: a direct solution can be given by Euclid's theorem, AB^2=AD*AC

[tex]AB^2=AD*AC[/tex] so 

 [tex] e^{2}=27*47[/tex], then take square root of e


Answer: 42.53 units



Ver imagen eco92