(6) (Bonus question: worth 10 points. Total points for assignment not to exceed 100.) Use an iterated integral to compute the volume of the ellipsoid x^2/a^2 + y^2/b^2 + z^2/c^2 = 1. The a, b, and c are positive constants.

Respuesta :

Let [tex]R[/tex] be the ellipsoid with equation

[tex]\left(\dfrac xa\right)^2+\left(\dfrac yb\right)^2+\left(\dfrac zc\right)^2=1[/tex]

so that the volume of [tex]R[/tex] is given by the triple integral

[tex]\displaystyle\iiint_R\mathrm dV[/tex]

Consider the augmented spherical coordinates given by the identities

[tex]\begin{cases}x=ar\cos u\sin v\\y=br\sin u\sin v\\z=cr\cos v\end{cases}[/tex]

Computing the Jacobian, we find that the volume element is given by

[tex]\mathrm dV=\mathrm dx\,\mathrm dy\,\mathrm dz=abcr^2\sin v\,\mathrm dr\,\mathrm du\,\mathrm dv[/tex]

so that the volume integral can be written as

[tex]\displaystyle\iiint_R\mathrm dV=abc\int_{v=0}^{v=\pi}\int_{u=0}^{u=2\pi}\int_{r=0}^{r=1}r^2\sin v\,\mathrm dr\,\mathrm du\,\mathrm dv=\frac{4abc\pi}3[/tex]