ANSWER QUICK FOR 50 POINTS! A deer jumps at 3.75 m/s from flat ground at a 46.3° angle. What is the maximum height of the jump? (Unit=m)

Respuesta :

msm555

Answer:

0.375 m

Explanation:

To find the maximum height of the deer's jump, we can use the following kinematic equation for projectile motion:

[tex]\sf h = \dfrac{{v_0^2 \sin^2(\theta)}}{{2g}} [/tex]

where:

  • h is the maximum height,
  • [tex]\sf \bold{v_0}[/tex] is the initial velocity,
  • [tex]\sf \bold{ \theta}[/tex] is the launch angle, and
  • g is the acceleration due to gravity (approximately 9.8 \, \textsf{m/s}^2 ).

Given:

[tex]\sf v_0 = 3.75 \, \textsf{m/s} [/tex] ,

[tex]\sf \theta = 46.3^\circ [/tex],

[tex]\sf g = 9.8 \, \textsf{m/s}^2[/tex] ,

Substitute these values into the equation:

[tex]\sf h = \dfrac{{(3.75 \, \textsf{m/s})^2 \sin^2(46.3^\circ)}}{{2 \times 9.8 \, \textsf{m/s}^2}} [/tex]

Calculate:

[tex]\sf h = \dfrac{{ 14.0625 \, \textsf{m}^2/s^2 \times \sin^2(46.3^\circ)}}{{19.6 \, \textsf{m/s}^2}} [/tex]

[tex]\sf h = \dfrac{{14.0625 \, \textsf{m}^2/s^2 \times 0.5226814941 }}{{19.6 \, \textsf{m/s}^2}} [/tex]

[tex]\sf h \approx \dfrac{{7.351515214 \, \textsf{m}^2/s^2}}{{19.6 \, \textsf{m/s}^2}} [/tex]

[tex]\sf h \approx 0.3750773068 \, \textsf{m} [/tex]

[tex]\sf h \approx 0.375 \, \textsf{m ( in 3 d.p.)} [/tex]

So, the maximum height of the deer's jump is approximately 0.375 m