Respuesta :
Answer:
30 minutes
Step-by-step explanation:
The half-life ([tex] t_{\frac{1}{2}} [/tex]) of a substance is the time it takes for half of the substance to decay. The half-life can be found using the formula:
[tex] N(t) = N_0 \left( \dfrac{1}{2} \right)^{\dfrac{t}{t_{\frac{1}{2}}}} [/tex]
where:
- [tex] N(t) [/tex] is the amount of the substance remaining at time [tex] t [/tex],
- [tex] N_0 [/tex] is the initial amount of the substance,
- [tex] t [/tex] is the time elapsed,
- [tex] t_{\dfrac{1}{2}} [/tex] is the half-life of the substance.
In this case, the initial amount of radioactive goo ([tex] N_0 [/tex]) is 248 grams, and after 120 minutes, the remaining amount ([tex] N(t) [/tex]) is 15.5 grams.
[tex] 15.5 = 248 \left( \dfrac{1}{2} \right)^{\dfrac{120}{t_{\frac{1}{2}}}} [/tex]
Now, solve for [tex] t_{\frac{1}{2}} [/tex]:
[tex] \dfrac{15.5}{248} = \left( \dfrac{1}{2} \right)^{\dfrac{120}{t_{\frac{1}{2}}}} [/tex]
[tex] 0.0625 = \left( \dfrac{1}{2} \right)^{\dfrac{120}{t_{\frac{1}{2}}}} [/tex]
[tex] \left(\dfrac{1}{2}\right)^4 = \left( \dfrac{1}{2} \right)^{\dfrac{120}{t_{\frac{1}{2}}}} [/tex]
Since we have the same base, we can compare the power
So,
[tex] 4 = \dfrac{120}{t_{\frac{1}{2}}} [/tex]
Solve for [tex] t_{\frac{1}{2}} [/tex]:
[tex] t_{\frac{1}{2}} =\dfrac{ 120}{4}[/tex]
[tex] t_{\frac{1}{2}} = 30[/tex]
The half-life of the goo is 30 minutes.