Respuesta :
Answer:
[tex]\textsf{D)}\quad \log_x 8[/tex]
Step-by-step explanation:
Given logarithmic expression:
[tex]5\log_x 2-\log_x 4[/tex]
To simplify the given expression, we can use logarithmic properties.
[tex]\boxed{\begin{array}{rl}\underline{\sf Logarithm\;Rules}\\\\\sf Power:&\log_ax^n=n\log_ax\\\\\sf Quotient:&\log_a \left(\dfrac{x}{y}\right)=\log_ax - \log_ay\end{array}}[/tex]
Begin by applying the power rule of logarithms:
[tex]\log_x 2^5 -\log_x 4[/tex]
[tex]\log_x 32 -\log_x 4[/tex]
Now, apply the quotient rule of logarithms:
[tex]\log_x\left(\dfrac{32}{4}\right)[/tex]
[tex]\log_x 8[/tex]
Therefore, the equivalent expression to 5 logₓ 2 - logₓ 4 is:
[tex]\huge\boxed{\boxed{\log_x 8}}[/tex]
Answer:
D: [tex] \log_x 8 [/tex]
Step-by-step explanation:
To find the equivalent expression for [tex]5 \log_x 2 - \log_x 4[/tex], we can use logarithmic properties. The key property here is the division rule for logarithms:
[tex] \log_a \dfrac{b}{c} = \log_a b - \log_a c [/tex]
Applying this property to the given expression:
[tex] 5 \log_x 2 - \log_x 4 = \log_x 2^5 - \log_x 4 [/tex]
Now, [tex]2^5[/tex] is equal to 32, so we can rewrite the expression as:
[tex] \log_x 32 - \log_x 4 [/tex]
Now, using the division rule for logarithms:
[tex] \log_x \dfrac{32}{4} [/tex]
Simplifying further, [tex] \dfrac{32}{4} = 8[/tex]:
[tex] \log_x 8 [/tex]
So, the equivalent expression is [tex] \log_x 8 [/tex], which corresponds to:
D: [tex] \log_x 8 [/tex]