The y-component of the velocity of the carrion is equal to zero. That being said, the time it takes for the carrion to reach the ground (as close as possible to the fox) can be calculated through the equation,
d = Vot + 0.5gt²
where d is the distance, Vo is initial velocity (in this case, zero), g is the acceleration due to gravity (9.8 m/s²). Substituting the known values,
14 = 0.5(9.8)(t²)
t = 1.69 seconds
Since the horizontal component of the velocity is 1.5 m/s, the distance from the base of the tree to the point where the carrion will fall is equal to,
(1.5 m/s)(1.69 s) = 2.535 m
We add this to the given distance of the fox from the base of the tree to determine the distance of the fox from the carrion.
total distance = 2.535 m + 7 m = 9.535 m
Given that the time it takes for it to travel would only be 1.69 seconds, the speed would then be,
speed = (9.535 m) / (1.69 s) = 5.64 m/s
ANSWER: speed = 5.64 m/s