Respuesta :
[tex]\bf \textit{we do the same here, the \underline{switcharoo} of the variables}
\\\\\\
f(x)=y=0.5(3)^x\qquad inverse\implies \boxed{x}=0.5(3)^{\boxed{y}}\\\\
-------------------------------\\\\
\textit{Logarithm of exponentials}\\\\
log_{{ a}}\left( x^{{ b}} \right)\implies {{ b}}\cdot log_{{ a}}(x)\impliedby \textit{we'll use this}\\\\
-------------------------------\\\\[/tex]
[tex]\bf x=0.5(3)^y\implies \cfrac{x}{0.5}=3^y\implies log\left( \frac{x}{0.5} \right)=log(3^y) \\\\\\ log\left( \frac{x}{0.5} \right)=y\cdot log(3)\implies \cfrac{log\left( \frac{x}{0.5} \right)}{log(3)}=y\impliedby f^{-1} \\\\\\ thus\qquad \cfrac{log\left( \frac{7}{0.5} \right)}{log(3)}=f^{-1}(7)[/tex]
and surely you know how much that'd be.
[tex]\bf x=0.5(3)^y\implies \cfrac{x}{0.5}=3^y\implies log\left( \frac{x}{0.5} \right)=log(3^y) \\\\\\ log\left( \frac{x}{0.5} \right)=y\cdot log(3)\implies \cfrac{log\left( \frac{x}{0.5} \right)}{log(3)}=y\impliedby f^{-1} \\\\\\ thus\qquad \cfrac{log\left( \frac{7}{0.5} \right)}{log(3)}=f^{-1}(7)[/tex]
and surely you know how much that'd be.
Answer:
naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Step-by-step explanation: