Respuesta :
[tex]\bf \textit{distance between 2 points}\\ \quad \\
\begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
% (a,b)
G&({{ 13}}\quad ,&{{ 2}})\quad
% (c,d)
H&({{ 1}}\quad ,&{{ 7}})
\end{array}\qquad
% distance value
d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}
\\\\\\
d=\sqrt{(1-13)^2+(7-2)^2}[/tex]
Answer:
square root of the quantity of [tex]7[/tex] minus [tex]2[/tex] all squared plus [tex]1[/tex] minus [tex]13[/tex] all squared
Step-by-step explanation:
we know that
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
we have
[tex]G(13,2)\\H(1,7)[/tex]
substitute the values
[tex]d=\sqrt{(7-2)^{2}+(1-13)^{2}}[/tex] -----> this is the expression
[tex]d=\sqrt{(5)^{2}+(-12)^{2}}[/tex]
[tex]d=\sqrt{169}\ units[/tex]
[tex]dGH=13\ units[/tex]