Respuesta :
Let's make x=Kelvin, y=Celsius, and z=Fahrenheit. Since x-273.15=y and 9/5(y) +32=z, we can substitute in x-273.15 for y, getting (9/5)(x-273.15)+32=z
Answer: [tex]F(C(x))=\frac{9}{5}x-459.67\text{, where x is the temperature in degrees Kelvin. }[/tex]
Step-by-step explanation:
Given: To convert temperatures from degrees Celsius to degrees Fahrenheit, you can use the function [tex]F(x)=\frac{9}{5}x+32[/tex] where x is the temperature in degrees Celsius.
To convert temperatures from degrees Kelvin to degrees Celsius, you can use the function [tex]C(x) = x - 273.15[/tex], where x is the temperature in degrees Kelvin.
The composite function that can be used to convert temperatures from degrees Kelvin to degrees Fahrenheit is given by :-
[tex]F\circ C(x)=F(C(x))\text{, where x is the temperature in degrees Kelvin. }\\\\=F( x - 273.15)\\\\=\frac{9}{5}( x - 273.15)+32\\\\=\frac{9}{5}x-\frac{9}{5}(273.15)+32\\\\=\frac{9}{5}x- 491.67+32\\\\\Rightarrow F(C(x))=\frac{9}{5}x-459.67\text{, where x is the temperature in degrees Kelvin. }[/tex]