Which products result in a difference of squares? Check all that apply.

(x – y)(y – x)
(6 – y)(6 – y)
(3 + xz)(–3 + xz)
(y2 – xy)(y2 + xy)
(25x – 7y)(–7y + 25x)
(64y2 + x2)(–x2 + 64y2)

Respuesta :

The answers to your question is C, D, and F. These products will result in a difference of squares

Answer:

[tex](3+xz)(-3+xz)[/tex]

[tex](y^{2}-xy)(y^{2}+xy)[/tex]

[tex](64y^{2}+x^{2})(-x^{2}+64y^{2})[/tex]

Step-by-step explanation:

we know that

The difference of squares is equal to

[tex](a+b)(a-b)=a^{2}-b^{2}[/tex]

so

case A) [tex](x-y)(y-x)[/tex]

[tex](x-y)(y-x)=-(x-y)(x-y)=-(x-y)^{2}[/tex] ------> is not a difference of squares

case B) [tex](6-y)(6-y)[/tex]

[tex](6-y)(6-y)=(6-y)^{2}[/tex] -----> is not a difference of squares

case C) [tex](3+xz)(-3+xz)[/tex]

[tex](3+xz)(-3+xz)=xz^{2}-3^{2}[/tex] -----> is a difference of squares

case D) [tex](y^{2}-xy)(y^{2}+xy)[/tex]

[tex](y^{2}-xy)(y^{2}+xy)=(y^{2})^{2}-xy^{2}[/tex] -----> is a difference of squares

case E) [tex](25x-7y)(-7y+25x)[/tex]

[tex](25x-7y)(-7y+25x)=-(25x-7y)^{2}[/tex] ------> is not a difference of squares

case F) [tex](64y^{2}+x^{2})(-x^{2}+64y^{2})[/tex]

[tex](64y^{2}+x^{2})(-x^{2}+64y^{2})=(64y^{2})^{2}-(x^{2})^{2}[/tex] -----> is a difference of squares