Answer:
x and y have a proportional relationship.
Step-by-step explanation:
For direct proportion, the ratios between x and y are always constant.
[tex]\boxed{\frac{y_1}{x_1} =\frac{y_2}{x_2} =\frac{y_3}{x_3} =...=c}[/tex]
Given:
x₁ = 4 y₁ = 32
x₂ = 7 y₂ = 56
x₃ = 9 y₃ = 72
x₄ = 11 y₄ = 88
[tex]\displaystyle\frac{y_1}{x_1} =\frac{32}{4} =8[/tex]
[tex]\displaystyle\frac{y_2}{x_2} =\frac{56}{7} =8[/tex]
[tex]\displaystyle\frac{y_3}{x_3} =\frac{72}{9} =8[/tex]
[tex]\displaystyle\frac{y_4}{x_4} =\frac{88}{11} =8[/tex]
Since [tex]\frac{y_1}{x_1} =\frac{y_2}{x_2} =\frac{y_3}{x_3} =\frac{y_4}{x_4}=8[/tex], therefore the x and y have a proportional relationship.