Respuesta :

Answer :

  • Area(r) = 135 in^2
  • Area(t) = 120 in^2
  • Area(f) = 255 in^2

Explanation :

Area of rectangle is given by,

  • Area(r) = breadth x height
  • Area(r) = 15in x 9in
  • Area(r) = 135 in^2

Area of triangle is given by,

  • Area(t) = 1/2bh
  • Area(t) = 1/2*16in*15in
  • Area(t) = 120 in^2

Area of the figure is given by,

  • Area(f) = Area(r) + Area(t)
  • Area(f) = 135 in^2 + 120 in^2
  • Area(f) = 255 in^2
msm555

Answer:

[tex]\textsf{Area of } \boxed{\quad} = \boxed{\quad 135 \quad } \; \sf in^2 [/tex]

[tex]\textsf{Area of } \triangle = \boxed{\quad 120 \quad } \sf \; in^2 [/tex]

[tex]\textsf{Area of Figure } = \boxed{\quad 255 \quad } \sf \; in^2 [/tex]

Step-by-step explanation:

To find the total area of the figure comprising a rectangle and a triangle, we need to calculate the areas of each shape separately and then add them together.

Given:

Rectangle:

  • Base (b) = 15 in
  • Height (h) = 9 in

Triangle:

  • Base (b) = 16 in
  • Height (h) = 15 in

Area of Rectangle:

[tex] \textsf{Area} = b \times h \\\\ = 15 \times 9 \\\\ = 135 \textsf{in} ^2 [/tex]

Area of Triangle:

[tex] \textsf{Area} = \dfrac{1}{2} \times b \times h \\\\ = \dfrac{1}{2} \times 16 \times 15 \\\\ = 120 \textsf{in}^2 [/tex]

Total Area of Figure:

[tex] \textsf{Total Area} = \textsf{Area of Rectangle} + \textsf{Area of Triangle} \\\\ = 135 + 120 \\\\ = 255 \textsf{in} ^2[/tex]

So, the total area of the figure (rectangle and triangle combined) is 255 in².