Respuesta :

Answer:

hello

Step-by-step explanation:

QP=4

TS=32

TE/QP=32/4

=8

RQ=2.7

TU=2.7x8

TU=21.6

Answer:

TU = 21.6

Step-by-step explanation:

If two triangles are similar, their corresponding sides are always in the same ratio.

Given that ΔPQR ~ ΔSTU then:

[tex]\dfrac{PQ}{ST}=\dfrac{QR}{TU}[/tex]

Plug in the given side lengths PQ = 4, QR = 2.7, and ST = 32:

[tex]\dfrac{4}{32}=\dfrac{2.7}{TU}[/tex]

Cross multiply:

[tex]4\cdot TU=2.7 \times 32[/tex]

Now, solve for TU:

[tex]TU=\dfrac{2.7 \times 32}{4}\\\\\\TU=\dfrac{86.4}{4}\\\\\\TU=21.6[/tex]

Therefore, the length of side TU is:

[tex]\Large\boxed{\boxed{TU=21.6}}[/tex]