Respuesta :

Answer:

[tex]\dfrac{1}{3}\ln|3x-8|+C[/tex]

Step-by-step explanation:

Given indefinite integral:

[tex]\displaystyle \int \dfrac{1}{3x-8}\;dx[/tex]

To evaluate the indefinite integral, we can use the method of substitution.

[tex]\textsf{Let}\;\;u=3x-8[/tex]

Find du/dx and rearrange to isolate dx:

[tex]\dfrac{du}{dx}=3 \implies dx=\dfrac{1}{3}\;du[/tex]

Rewrite the original integral in terms of u and du:

[tex]\displaystyle \int \dfrac{1}{u}\cdot \dfrac{1}{3}\;du[/tex]

Take out the constant:

[tex]\displaystyle \dfrac{1}{3} \int \dfrac{1}{u}\;du[/tex]

Now, evaluate using the common integral ∫ 1/x dx = ln|x|:

[tex]\dfrac{1}{3}\ln|u|+C[/tex]

Substitute back in u = 3x + 8:

[tex]\dfrac{1}{3}\ln|3x-8|+C[/tex]

Therefore:

[tex]\displaystyle \int \dfrac{1}{3x-8}\;dx=\boxed{\dfrac{1}{3}\ln|3x-8|+C}[/tex]