25. If A + B + C = pi then Prove that: cos(A/2) - cos(B/2) + cos(c/2) =4 cos( pi+A 4 ).cos( pi-B 4 ).cos( pi+C/4)​

Respuesta :

To prove the given expression:

We start with expressing cos(A/2), cos(B/2), and cos(C/2) in terms of A, B, and C.

Given: A + B + C = pi

Using the half-angle formula for cosine:

cos(A/2) = sqrt((1 + cos A)/2)

cos(B/2) = sqrt((1 + cos B)/2)

cos(C/2) = sqrt((1 + cos C)/2)

Now, let's express cos((pi + A)/4), cos((pi - B)/4), and cos((pi + C)/4):

cos((pi + A)/4) = sqrt((1 - cos A)/2)

cos((pi - B)/4) = sqrt((1 + cos B)/2)

cos((pi + C)/4) = -sqrt((1 - cos C)/2)

Now, substituting these expressions back into the original equation:

4 cos((pi + A)/4) * cos((pi - B)/4) * cos((pi + C)/4)

= 4 * sqrt((1 - cos A)/2) * sqrt((1 + cos B)/2) * -sqrt((1 - cos C)/2)

= -4 * sqrt((1 - cos A)(1 - cos C)/4)

Now, let's look at the original expression:

cos(A/2) - cos(B/2) + cos(C/2)

Using the properties of cosine:

= sqrt((1 + cos A)/2) - sqrt((1 + cos B)/2) + sqrt((1 + cos C)/2)

Now, let's use the given property A + B + C = pi:

cos A = -(cos B + cos C)

Substituting this into the original expression:

= sqrt((1 - cos A)/2) - sqrt((1 + cos B)/2) + sqrt((1 + cos C)/2)

Now, notice that this expression is the negative of the one we derived from the right side of the equation.

So, we can rewrite the original equation as:

cos(A/2) - cos(B/2) + cos(C/2) = 4 cos((pi + A)/4) * cos((pi - B)/4) * cos((pi + C)/4)

Thus, the given expression is proven.