Respuesta :
Answer:
Approximately [tex]0.97\; {\rm m}[/tex] (assuming that [tex]g = 9.81\; {\rm m\cdot s^{-2}}[/tex].)
Explanation:
Overview of steps:
- Using info about the oscillation, find the spring constant.
- Apply conservation of energy to find height change.
After sticking to the cushioned block on the spring, the combination is a system in a simple harmonic motion:
- Mass of oscillator: [tex]50\; {\rm kg} + 150\; {\rm kg} = 200\; {\rm kg}[/tex] (assuming mass of spring is negligible.)
- Period of oscillation: [tex]T = (10\; {\rm s}) / 3 = (10/3)\; {\rm s}[/tex].
Let [tex]A[/tex] denote the amplitude of the motion. At time [tex]t[/tex]:
- Position would be [tex]x(t) = A\, \sin((2\, \pi / T)\, t)[/tex].
- Velocity would be [tex]\omega(t) = A\, (2\, \pi / T)\, \cos((2\, \pi / T)\, t)[/tex]..
- Acceleration would be [tex]a(t) = - A\, (2\, \pi / T)^{2}\, \sin((2\, \pi / T)\, t)[/tex]
- Restoring force would be [tex]F(t) = m\, (a(t)) = - m\, A\, (2\, \pi / T)^{2} \, \sin((2\, \pi / T)\, t)[/tex].
Since by Hooke's Law [tex]F = -k / x[/tex] for this spring, the spring constant [tex]k[/tex] would be:
[tex]\begin{aligned}k &= - \frac{F(t)}{x(t)} \\ &= m\, \left(\frac{2\, \pi}{T}\right)^{2} \\ &= (200\; {\rm kg})\, \left(\frac{2\,\pi}{(10/3)\; {\rm s}}\right)^{2} \\ &\approx 710.612\; {\rm N\cdot m^{-1}}\end{aligned}[/tex].
Let [tex]x = 2\; {\rm m}[/tex] denote maximum displacement. Elastic potential energy:
[tex]\begin{aligned} (\text{EPE}) &= \frac{1}{2}\, k\, x^{2} \\ &\approx \frac{1}{2}\, (710.612)\, (2)^{2}\; {\rm J} \\ &\approx 1.42122\times 10^{3}\; {\rm J}\end{aligned}[/tex].
Let [tex]\Delta h[/tex] denote the change in height. The change in gravitational potential energy would be [tex](\text{GPE}) = m\, g\, \Delta h[/tex] where [tex]m = 150\; {\rm kg}[/tex].
Assuming that energy is conserved, and [tex](\text{EPE})[/tex] is equal to the change in [tex](\text{GPE})[/tex]. The change in height would be:
[tex]\displaystyle \frac{1.42122\times 10^{3}\; {\rm J}}{(150\; {\rm kg})\, (9.81\; {\rm N\cdot kg^{-1}})} \approx 0.97\; {\rm m}[/tex].