Respuesta :

Answer:

[tex]x=\dfrac{-1 \pm \sqrt{5}}{2}[/tex]

Step-by-step explanation:

Given the equation:

[tex]x^2e^x + xe^x - e^x = 0[/tex]

We can solve for x by factoring and using the zero product property.

↓ factoring out an [tex]e^x[/tex] from every term

[tex]e^x(x^2 + x - 1) = 0[/tex]

↓ splitting into two equations using the zero product property

1) [tex]e^x \ne 0[/tex]

[tex]\implies \text{extraneous solution}[/tex]

_____

2) [tex]x^2 + x - 1 = 0[/tex]

↓ plugging into the quadratic formula

[tex]x=\dfrac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)}[/tex]

↓ simplifying the square root

[tex]\boxed{x=\dfrac{-1 \pm \sqrt{5}}{2}}[/tex]