Respuesta :

Answer:

[tex]\huge\boxed{(0,4)}[/tex]

[tex]\huge\boxed{\left(\frac{2}{3},\ \frac{32}{27}\right)}[/tex]

Step-by-step explanation:

We are solving for the points on the curve where the tangent line has a slope of 4.

In other words, we are solving for the points when [tex]y' = 4[/tex].

First, we can expand the function.

[tex]y=(x-1)(x^2-4)[/tex]

[tex]y= x^3 - 4x - x^2 + 4[/tex]

[tex]y=x^3-x^2-4x+4[/tex]

Next, we can take its derivative using the power rule.

  • [tex](x^a)' = ax^{a-1}[/tex]

↓↓↓

[tex]y' = 3x^2 - 2x - 4[/tex]

Now, we can set y' to 4 and solve for x to get the x-coordinates of the points when the curve is parallel to y = 4x:

[tex]4 = 3x^2-2x-4[/tex]

[tex]0 = 3x^2 - 2x[/tex]

[tex]0=x(3x-2)[/tex]

⇒   [tex]x = 0[/tex]    or   [tex]3x - 2 = 0[/tex]

                                 [tex]x = 2/3[/tex]

Finally, we can plug these x-coordinates back into the original function to get points:

1) [tex]y = (0 - 1)(0^2 - 4)[/tex]

[tex]y = (-1)(-4)[/tex]

[tex]y=4[/tex]

⇒ [tex]\huge\boxed{(0,4)}[/tex]

2) [tex]y=(2/3 - 1)((2/3)^2 - 4)[/tex]

[tex]y = (-1/3)(-32/9)[/tex]

[tex]y = 32/27[/tex]

⇒ [tex]\huge\boxed{\left(\frac{2}{3},\ \frac{32}{27}\right)}[/tex]