Respuesta :

Answer and Explanation:

We know that the interior angles of a triangle add to 180°.

So, we can construct the following equation to solve for x:

[tex]65\° + (3x-10)\° + (2x)\° = 180\°[/tex]

↓ combining like terms

[tex]55\° + (5x)\° = 180\°[/tex]

↓ subtracting 55° from both sides

[tex](5x)\° = 125\°[/tex]

↓ dividing both sides by 5°

[tex]\boxed{x = 25}[/tex]

Next, we can plug this x-value into the definitions of angles B and C:

[tex]m\angle B = (3x-10)\°[/tex]

[tex]m\angle B = (3(25)-10)\°[/tex]

[tex]m\angle B = (75-10)\°[/tex]

[tex]\boxed{m\angle B = 65\°}[/tex]

___

[tex]m\angle C = (2x)\°[/tex]

[tex]m\angle C = (2(25))\°[/tex]

[tex]\boxed{m\angle C = 50\°}[/tex]