Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the
correct position in the answer box. Release your mouse button when the item is place. If you change your mind, drag
the item to the trashcan. Click the trashcan to clear all your answers.
Solve this quadratic equation using the quadratic formula.
3x²+5x+1=0

Respuesta :

Answer:

[tex]x=\dfrac{-5+\sqrt{13}}{6}, \quad x=\dfrac{-5-\sqrt{13}}{6}[/tex]

Step-by-step explanation:

The quadratic formula is a mathematical expression used to find the solutions of a quadratic equation of the form ax² + bx + c = 0.

[tex]\boxed{\begin{array}{l}\underline{\sf Quadratic\;Formula}\\\\x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}\\\\\textsf{when} \;ax^2+bx+c=0 \\\end{array}}[/tex]

For the equation 3x² + 5x + 1 = 0, the coefficients a, b and c are:

[tex]a = 3\\\\b = 5\\\\c = 1[/tex]

Substitute these values into the quadratic formula and solve for x:

[tex]x=\dfrac{-5 \pm \sqrt{5^2-4(3)(1)}}{2(3)}\\\\\\\\x=\dfrac{-5 \pm \sqrt{25-12}}{6}\\\\\\\\x=\dfrac{-5 \pm \sqrt{13}}{6}[/tex]

Therefore, the solutions to the equation 3x² + 5x + 1 = 0 are:

[tex]\large\boxed{\boxed{x=\dfrac{-5+\sqrt{13}}{6}, \quad x=\dfrac{-5-\sqrt{13}}{6}}}[/tex]