The equation 9+9x-x^2-x^3=k has one solution only when k < a and when k > b, where a and b are integers. Find the maximum value of a and minimum value of b.

a=?

b=?

Respuesta :

Answer:

f(x) = 9 + 9x - x² - x³

f'(x) = 9 - 2x - 3x²

3x² + 2x - 9 = 0

x = (-2 ± √(2² - 4(3)(-9)))/(2(3))

= (-2 ± √(4 + 108))/6

= (-2 ± √112)/6

= (-2 ± 4√7)/6

= (-1 ± 2√7)/3

f((-1 - 2√7)/3) = -5.049

f((-1 + 2√7)/3) = 16.901

When -6 < k < 17, f(x) will have one real solution.

a = 17, b = -6