Respuesta :

Answer:

[tex]4(\sin(2\theta))^2[/tex]

Step-by-step explanation:

We can simplify the trigonometric expression:

[tex]4 (\cos(\theta))^2 \cdot 4(\sin(\theta))^2[/tex]

with the following steps:

1) grouping like terms

[tex]=4^2(\cos(\theta))^2 (\sin(\theta))^2[/tex]

2) rewriting each factor squared as the square of the product

[tex]=\left(\dfrac{}{}4\cos(\theta)\sin(\theta)\dfrac{}{}\right)^\!2[/tex]

3) replacing the expression in parentheses with the double angle identity:

[tex]\sin(2\theta) = 2\sin(\theta)\cos(\theta)[/tex]

↓↓↓

[tex]=\left(\dfrac{}{}2\cdot \underline{2\cos(\theta)\sin(\theta)}\dfrac{}{}\right)^\!2[/tex]

[tex]=\left(\dfrac{}{}2\sin(2\theta)\dfrac{}{}\right)^2[/tex]

4) distributing the square to each factor

[tex]= \boxed{4(\sin(2\theta))^2}[/tex]