Answer:
J'(-7, 8)
K'(-9, 8)
L'(-9, 10)
M'(-7, 10)
Step-by-step explanation:
To find the coordinates of the reflected points over the line x = -1 , we can use the formula for reflecting a point (x, y) over a vertical line x = a, which is:
[tex]\Large\boxed{\boxed{(x', y') = (2a - x, y)}}[/tex]
In this case, since the line of reflection is x = -1, the value of a is -1.
Let's apply this formula to each point:
For point J(5, 8):
(x', y') = (2(-1) - 5, 8) = (-2 - 5, 8) = (-7, 8)
For point K(7, 8):
(x', y') = (2(-1) - 7, 8) = (-2 - 7, 8) = (-9, 8)
For point L(7, 10):
(x', y') = (2(-1) - 7, 10) = (-2 - 7, 10) = (-9, 10)
For point M(5, 10):
(x', y') = (2(-1) - 5, 10) = (-2 - 5, 10) = (-7, 10)
So, the coordinates of the reflected points are:
J'(-7, 8)
K'(-9, 8)
L'(-9, 10)
M'(-7, 10)