Respuesta :
[tex]f(x)=\frac{1}{3}x+9 \\ \\
f(x)\ \textless \ 0 \\
\frac{1}{3}x+9\ \textless \ 0 \\
\frac{1}{3}x\ \textless \ -9 \\
x\ \textless \ -27 \\ \\
f(x)\ \textgreater \ 0 \\
\frac{1}{3}x+9\ \textgreater \ 0 \\
\frac{1}{3}x\ \textgreater \ -9 \\
x\ \textgreater \ -27[/tex]
f(x)<0 for x<-27, f(x)>0 for x>-27.
Therefore, if x<0 then f(x) can be either less or greater than 0. If x>0 then f(x) is greater than 0.
Statement (4) is always true.
f(x)<0 for x<-27, f(x)>0 for x>-27.
Therefore, if x<0 then f(x) can be either less or greater than 0. If x>0 then f(x) is greater than 0.
Statement (4) is always true.
[tex]1) f(x) \ \textless \ 0[/tex]
=> We do not know the value of x. Therefore, we cannot be sure. Not sure.
__________________________________________________________________
[tex]2) f(x) \ \textgreater \ 0[/tex]
=> The same way. X is unknown, it is not always true.
__________________________________________________________________
3) If x < 0, then f(x) < 0
=> It doesn't provide in each case.
Let's take two examples:
◘ Suppose that; x = -30
[tex] \frac{1}{3} x + 9 = \frac{1}{3} (-30) + 9 [/tex]
[tex]= (-10) + 9 = -1[/tex]
Okay, it provided.
◘ But, x= -3
[tex] \frac{1}{3} x + 9 = \frac{1}{3} (-3) + 9 = 8[/tex]
x <0 but f(x) > 0
False.
______________________________________________________________
4) x > 0, then f(x) > 0
That's true !
Examples:
x= 6
[tex] \frac{1}{3} x + 9 = \frac{1}{3}. 6 + 9 = 2 + 9 = 11[/tex]
f(6) = 11
Namely,
if x>0 , f(x) >0
_____________________________________________________________
Answer= 4
=> We do not know the value of x. Therefore, we cannot be sure. Not sure.
__________________________________________________________________
[tex]2) f(x) \ \textgreater \ 0[/tex]
=> The same way. X is unknown, it is not always true.
__________________________________________________________________
3) If x < 0, then f(x) < 0
=> It doesn't provide in each case.
Let's take two examples:
◘ Suppose that; x = -30
[tex] \frac{1}{3} x + 9 = \frac{1}{3} (-30) + 9 [/tex]
[tex]= (-10) + 9 = -1[/tex]
Okay, it provided.
◘ But, x= -3
[tex] \frac{1}{3} x + 9 = \frac{1}{3} (-3) + 9 = 8[/tex]
x <0 but f(x) > 0
False.
______________________________________________________________
4) x > 0, then f(x) > 0
That's true !
Examples:
x= 6
[tex] \frac{1}{3} x + 9 = \frac{1}{3}. 6 + 9 = 2 + 9 = 11[/tex]
f(6) = 11
Namely,
if x>0 , f(x) >0
_____________________________________________________________
Answer= 4