Respuesta :

2sin²(x) + 3sin(x) + 1 = 0
2sin(x)(sin(x)+1) + 1(sin(x)+1) = 0
(sin(x)+1)(2sin(x)+1) = 0
sin(x) = -1
x = {3π/2}
2sin(x) + 1 = 0
sin(x) = -1/2
x = {7π/6, 11π/6}
x = {7π/6, 3π/2, 11π/6}

Answer:

Step-by-step explanation:

First we need to factor the given equation and then using the zero producr property we ned to equate each factors to 0 .

[tex]2sin^2x-3sinx+1=0\\(2sinx-1)(sinx-1)=0\\2sinx-1=0 \\and\\ sinx-1=0 \\sinx=1 \\and\\sinx=\frac{1}{2}[/tex]

so now we can solve each of these

[tex]sinx=1\\x=\frac{\pi }{2}[/tex]

and

[tex]sinx=\frac{1}{2} \\x=\frac{\pi }{6} ,\frac{5pi}{6}[/tex]

solution is

[tex]x=\frac{\pi }{6},\frac{\pi }{2} ,\frac{5pi}{6}[/tex]