0.31 AU
Since the mass of the new star is roughly equal to the mass of the sun, you can assume the same orbital characteristics apply. So using Kepler's Third law, the period of the orbit is proportional to the square root of the cube of the orbit distance.
First, determine how much faster the orbit period is compared to Earth.
63 / 365 = 0.172603
Since the period is proportional to the square root of the cube (3/2 power), you can invert that and raise the relative period to the 2/3 power. So
0.172603^(2/3) = 0.31
Since the Earth's semi-major axis is 1 AU, that would mean that the new planet's semi-major axis is 0.31 AU.