Answer:
The correct option is D. The interval [2.5, 4] contains a local minimum for the graphed function
Step-by-step explanation:
According to the definition of local mimima, a function has local minima at c if
[tex]f(c)<f(x)[/tex]
for all values of x. where, [tex]x\in [c-\epsilon, c+\epsilon][/tex]
From the graph it is clear that the given function has local minima at (-0.44,-4.3) and (3,-4).
[tex]-0.44\notin [-4, -2.5], 3\notin [-4, -2.5][/tex]
Therefore option A is incorrect.
[tex]-0.44\notin [-2, -1], 3)\notin [-2, -1][/tex]
Therefore option B is incorrect.
[tex]-0.44\notin [1, 2], 3\notin [1, 2][/tex]
Therefore option C is incorrect.
[tex]-0.44\notin [2.5, 4], 3\in [2.5, 4][/tex]
Therefore option D is correct.