Respuesta :

the graph that represents the system of inequalities is graph 3

Answer:

The correct option is 2.

Step-by-step explanation:

The given system of inequalities

[tex]y+2<5x[/tex]

[tex]y+3x>4[/tex]

[tex]y\geq 2x[/tex]

Inequality (1) can be written as

[tex]y<5x-2[/tex]

The related equation is

[tex]y=5x-2[/tex]

The slope of line is 5 and y-intercept is -2.

The sign of inequality is < , it means related line of inequality (1) is a dotted line and shaded region is below the line.

Inequality (2) can be written as

[tex]y>-3x+4[/tex]

The related equation is

[tex]y=-3x+4[/tex]

The slope of line is -3 and y-intercept is 4.

The sign of inequality is >, it means related line is a dotted line and shaded region is above the line.

Inequality (3) is

[tex]y\geq 2x[/tex]

The related equation is

[tex]y=2x[/tex]

The slope of line is 2 and y-intercept is 0.

The sign of inequality is ≥, it means related line is a solid line and shaded region is above the line.

In the below graph the common shaded region is the solution region.

Therefore the correct option is 2.

Ver imagen erinna